Synthesis Based on Cyclohexadienes. Part 8.1 Synthesis of 1-Methylbicyclo[2.2.2]oct-2-enecarboxylate Derivatives

G. S. R. Subba Rao* and K. Vijaya Bhaskar
Department of Organic Chemistry, Indian Institute of Science, Bangalore-560 012, India

The 1,4-dihydrotoluic acids, obtained by the Birch reduction of 2-methyl- and 3-methyl-benzoic acids are isomerised to 2 -methylcyclohexa-1,5-diene-1-carboxylic acid 10 and 5 -methylcyclohexa-1,5-diene-1-carboxylic acid 15, respectively. These conjugated diene acids undergo facile cycloaddition with dienophiles resulting in bicyclo[2.2.2]octene derivatives having a bridgehead methyl group. While the cycloaddition of 10 with dienophiles produces regioisomeric mixture of adducts, the acid 15 affords regiospecific products.

1-Methylbicyclo[2.2.2]octane $\mathbf{1}$ is an important structural subunit present in several naturally occurring sesquiterpenes, e.g., khusiol, patchouli alcohol and seychellene. This structural moiety can be readily made from 1-methylcyclohexa-1,3-diene ${ }^{2}$ by Diels-Alder reaction with an appropriate dienophile. However, preparation of $\mathbf{2}$ involves cumbersome procedures ${ }^{3}$ and often results in isomeric diene mixtures. Birch reduction of anisole yields ${ }^{4} 1$-methoxycyclohexa-1,4-diene 3 which can be readily isomerised ${ }^{5}$ to 1 -methoxycyclohexa-1,3-diene 4. Unlike

Me
1

2

3

4

the diene 3, base catalysed isomerisation of 1-methylcyclohexa-1,4-diene 5, obtained by the metal-ammonia reduction of toluene, results ${ }^{6}$ in disproportionation affording mainly toluene and 1-methylcyclohex-1-ene 6. However, base catalysed isomerisation of 2-methylcyclohexa-2,5-diene-1-carboxylic acid 8 , obtained by the Birch reduction of 2-methylbenzoic acid, has been reported ${ }^{7}$ to yield 2-methylcyclohexa-1,5-diene-1-carboxylic acid 10. Decarboxylation ${ }^{8}$ of 10 should result in the 1-methylcyclohexa-1,3-diene 2. As part of our programme on the synthesis of tricyclic sesquiterpenes, we required an efficient method for the construction of the 1-methylbicyclo[2.2.2]octene framework and examined the base catalysed isomerisation of 1,4-dihydrotoluic acids and the Diels-Alder reaction of the resulting conjugated diene acids with various dienophiles to unravel the regiochemistry of the cyclic adducts and our results are reported in this paper.
(a) Isomerisation of Dihydrotoluic Acids.-Reduction of anisic and toluic acids with sodium in liquid ammonia was first examined by Birch ${ }^{7}$ who observed that the carboxy group influenced the course of reduction of the benzene ring in these
acids and that the hydrogens were added to the carbon bearing the carboxy group thus producing the 1,4 -dihydro acids. Later Kuehne and Lambert ${ }^{9}$ reported the formation of dihydro and tetrahydro acids during the sodium in liquid ammonia reduction of substituted benzoic acids and benzamides. They have further observed the hydrogenolysis of the methoxy group positioned para to the carboxy group in the reduction of 4 methoxybenzoic acid and 3,4,5-trimethoxybenzoic acid. Van Bekkum et al., ${ }^{10}$ thoroughly investigated the reduction of alkyl substituted benzoic acids with lithium in liquid ammonia and deduced a mechanism for the formation of the dihydro and tetrahydro acids.

Reduction of 2-methylbenzoic acid 7 with sodium in liquid ammonia and quenching with ammonium chloride afforded the 2-methylcyclohexa-2,5-diene-1-carboxylic acid 8 in 95% yield. Similarly reduction of 3-methylbenzoic acid 13, 4-methylbenzoic acid 17, 2,3-dimethylbenzoic acid 20 and 2,5-dimethylbenzoic acid 23 gave 3-methylcyclohexa-2,5-diene-1-carboxylic acid 14, 4-methylcyclohexa-2,5-diene-1-carboxylic acid 18, 2,3-dimethylcyclohexa-2,5-diene-1-carboxylic acid 21a and 2,5-dimethylcyclohexa-2,5-diene-1-carboxylicacid 24a, respectively, in excellent yields. The structures of these products were deduced from their ${ }^{1} \mathrm{H}$ NMR spectral data. Reduction using lithium did not improve the yield of the product.
The isomerisation of the dihydro acid 8 with 20% aqueous sodium hydroxide resulted in a mixture of the acids 7, 8 and 10 from which the conjugated dihydro acid 10 was isolated in 15% yield. The conjugation of the acid 8 was investigated using other bases such as $\mathrm{Bu}^{t} \mathrm{OK}-\mathrm{Bu}^{t} \mathrm{OH}, \mathrm{NaH}$-benzene, $\mathrm{KNH}_{2}-\mathrm{NH}_{3}$ and $\mathrm{Bu}^{t} \mathrm{OK}$-dimethyl sulfoxide (DMSO). In all these cases a mixture of products was obtained. However, treatment of the dihydro acid 8 with sodium methoxide in methanol afforded the conjugated acid 10 . The structure of the acid 10 was deduced from its spectral data, in particular the ${ }^{1} \mathrm{H}$ NMR spectrum showed two broad doublets at $\delta 5.7$ and 6.4 for the two vicinal

protons. The parent dihydro acid 8 exhibited resonances at $\delta 5.5$ $(1 \mathrm{H})$ and $5.8(2 \mathrm{H})$, for the three olefinic protons as two broad singlets and a multiplet at $\delta 3.5$ for the methine proton adjacent to the carboxy group. The isomeric structure 11 was excluded for the conjugated product on the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum, since the olefinic proton situated β - to the carboxy group would have been deshielded and appeared at $\delta 6.8$.

The mechanism of formation of the conjugated acid 10 from the acid 8 involves the base catalysed generation of the mesomeric anion 9 a which is in equilibrium with 9 b and its protonation. Kinetic protonation results in the unconjugated acid 8 while protonation under thermodynamic conditions affords the conjugated acid 10. Protonation of the mesomeric anion 9a can presumably occur at $\mathrm{C}-3$ or $\mathrm{C}-5$, leading to the compounds 10 and 11, respectively, although experimental evidence indicates exclusive protonation at $\mathrm{C}-3$. Methylation of the mesomeric anion 9 a has been shown ${ }^{10}$ to produce 1,2-dimethylcyclohexa-2,5-diene-1-carboxylic acid 12, the methyl group occupying the position adjacent to the carboxy group where the charge density would be maximum.

13

14

15

16

17

18

19

Treatment of 3-methylcyclohexa-2,5-diene-1-carboxylic acid 14 with sodium methoxide in methanol afforded exclusively 5 -methylcyclohexa-1,5-diene-1-carboxylic acid 15 . The ${ }^{1} \mathrm{H}$ NMR spectrum of the acid 15 indicated the presence of a methyl group at $\delta 2.2$ and two olefinic protons, appeared as two broad doublets, at 5.7 and 6.4. From this data, the isomeric structure 16 for the conjugated product was ruled out. Isomerisation of the acid 18 with sodium methoxide in methanol produced the conjugated acid 19 in good yield. Conjugation of the acids 21a and 24a with sodium methoxide in methanol did not produce any of the desired material. However treatment of the methyl esters 21b and 24b with 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU) in refluxing benzene afforded the corresponding conjugated esters 22 and $\mathbf{2 5}$ in good yield. The structures were supported by their spectral data.
(b) Diels-Alder Reactions.-The conjugated acid 10 under-

20

23

21a $R=H$
b $\mathrm{R}=\mathrm{Me}$

24a $R=H$ b $\mathrm{R}=\mathrm{Me}$
went cycloaddition smoothly with dienophiles resulting in a mixture of regioisomeric bicyclo[2.2.2]octene adducts. Treatment of the diene acid 10 with methyl acrylate in refluxing benzene, followed by esterification of the resulting product with ethereal diazomethane afforded a (2:1) mixture of adducts 26

and 27, easily separated by column chromatography. Compounds 26 and 27 were assumed to possess endo configuration (methoxycarbonyl group endo with respect to the double bond) from their ${ }^{1} \mathrm{H}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum of 26 indicated the presence of an olefinic proton as a doublet at δ 7.13 , two singlets due to the two methoxycarbonyl groups at δ 3.63 and 3.53 , and a singlet at $\delta 1.4$ due to the methyl group while that of the adduct 27 showed the olefinic proton at $\delta 7.0$ as a doublet and the two methoxycarbonyl groups at 3.63 and 3.56 and the methyl group at 1.4 as singlets. Further confirmation of the structures of these products came from the hydrogenation experiments. The adduct 26 on catalytic hydrogenation produced the diester 28 having a planar symmetry as confirmed from its ${ }^{13} \mathrm{C}$ NMR spectrum, which showed 9 lines for the 13 carbon atoms. On the other hand, hydrogenation of 27 resulted in the product 29 , identical with the product obtained by the hydrogenation of the adduct 36 (see below) and showed 13 lines for the 13 carbon atoms as expected.

Similarly, the diene acid 10 when heated with methyl vinyl ketone and 2-chloroacrylonitrile afforded a mixture of adducts 30 and 31 and 32 and 33 in the ratio of $(3: 2)$ and $(2: 1)$, respectively. Hydrolysis of the mixture 32 and 33 with $\mathrm{KOH}-$
DMSO afforded the ketones 34 and 35 , which could be separated.

Unlike the diene acid 10 , cycloaddition of the conjugated acid 15 with a variety of dienophiles resulted in regiospecific products in good yield. Treatment of 15 with methyl acrylate followed by esterification gave the endo-dimethyl 4-methylbi-

$36 \mathrm{R}=\mathrm{OMe}$
$37 \mathrm{R}=\mathrm{Me}$

$39 \mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{CN}$

$41 R^{1}=H, R^{2}=C N$
cyclo[2.2.2]oct-2-ene-2,5-dicarboxylate 36 . The ${ }^{1} \mathrm{H}$ NMR spectrum of 36 showed the presence of the olefinic proton as a doublet at $\delta 7.03$, two singlets for the two methoxycarbonyl protons at 3.75 and 3.6 and a singlet at 1.24 for the methyl protons. Catalytic hydrogenation of 36 produced the unsymmetrical diester 29, identical with the compound obtained from the adduct 27, thus confirming its structure. Similarly, the adducts $37,38,39$ and 41 were obtained from the cycloaddition of the conjugated diene acid 15 with the dienophiles, methyl vinyl ketone, maleic anhydride, 2-chloroacrylonitrile and acrylonitrile followed by esterification. In all the cases only endo adducts were obtained and these were characterised from their spectral data. Hydrolysis of the adduct 39 with KOH-DMSO produced the keto acid 40 . The adduct 41 , on oxidative decyanation ${ }^{11}$ afforded the keto acid 40 , identical with the compound, obtained from the adduct 39 . Since the cycloaddition of the conjugated compound 19 produced bicyclo[2.2.2]octene derivatives without a bridgehead methyl group, this was not examined.

42

43

Treatment of the ester 22b with methyl vinyl ketone produced the adduct 42 in good yield. The structure of the product was proved by comparison with an authentic product, obtained by the pyrolysis ${ }^{12}$ of the pyrazolone 43, readily prepared from the ester 37 with diazomethane. Cycloaddition of the ester 25b with methyl acrylate afforded a ($2: 1$) mixture of the regioisomeric adducts, 44 and 45 , which was separated and characterised.

In conclusion, a simple method for the regiospecific construction of bicyclo[2.2.2]octene derivatives having a bridgehead methyl group is described based on cycloaddition of 2-methylcyclohexa-1,5-diene-1-carboxylicacid 10 and 5-methyl-cyclohexa-1,5-diene-1-carboxylic acid 15 with dienophiles. While the cycloaddition of the acid 15 resulted in a single regiospecific adduct, a regioisomeric mixture of adducts was obtained with the acid 10. The difference in the Diels-Alder regioselectivity between the acids 10 and 15 can be rationalised by frontier orbital considerations. It is clear from the above results that the methyl group appears to wield a superior directing effect with regard to the carboxy group in these cycloadditions.
Total synthesis of seychellene, ${ }^{13}$ patchouli alcohol ${ }^{14}$ and norpatchoulenol ${ }^{14}$ has been achieved from the adducts 42 and 34.

Experimental

Melting points were determined on a Mettler FP 1 instrument and are uncorrected. IR spectra were recorded on a PerkinElmer 781 instrument as Nujol mulls. NMR spectra were recorded on Varian T-60 and JEOL FX 90Q spectrometers in CDCl_{3} with tetramethylsilane as an internal standard. J Values are given in Hz. Mass spectra were taken on a JEOL DMX 303 instrument. Preparative TLC was carried out on 1 mm glass
plates ($20 \times 20 \mathrm{~cm}$) of Acme's silica gel. Acme's silica gel ($60-$ 120 mesh) was used for column chromatography. Liquid ammonia was distilled from sodium amide before use. The reaction mixtures were worked up by the addition of water followed by extraction with diethyl ether and then washing the organic phase successively with water, brine and water. The organic extracts were dried over anhydrous sodium sulfate. After removal of the solvent, the residues were purified either by preparative TLC or by column chromatography on silica gel and elution with hexane containing 5% ethyl acetate.

General Procedure for the Metal-Ammonia Reduction of Aromatic Carboxylic Acids.-The aromatic carboxylic acid in dry tetrahydrofuran (THF) was added to liquid ammonia with stirring. Sodium metal (4 equiv.) was then added in pieces until the reaction mixture attained a permanent blue colour. Stirring was continued for another 1 h . The mixture was then quenched by the addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ in small portions until the solution became colourless. The ammonia was allowed to evaporate and then water was added to the residue and the aqueous solution was cooled and acidified with 10% hydrochloric acid. The reaction mixture was worked up as detailed before.

2-Methylcyclohexa-2,5-diene-1-carboxylic acid 8. o-Toluic acid $7(13.6 \mathrm{~g}, 100 \mathrm{mmol})$ in THF $\left(150 \mathrm{~cm}^{3}\right)$ and liquid ammonia ($1500 \mathrm{~cm}^{3}$) was reduced with sodium (9 g) to yield the dihydro acid 8, m.p. $76-77^{\circ} \mathrm{C}$ (light petroleum) (lit.,$^{10} 77-78^{\circ} \mathrm{C}$). $v_{\max } / \mathrm{cm}^{-1} 3300-2300,1695,1650,1310,1220,905,780$ and 680; $\delta 11.9\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 5.8(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H=\mathrm{C} H), 5.5(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{C}-\mathrm{CH}_{3}\right), 3.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.8-2.4\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and 1.7 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) (Found: C, 69.6; H, 7.3. Calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 69.5; H, 7.3\%).

3-Methylcyclohexa-2,5-diene-1-carboxylic acid 14. m-Toluic acid $13(13.6 \mathrm{~g}, 100 \mathrm{mmol})$ was reduced with sodium $(9 \mathrm{~g})$ in liquid ammonia ($1500 \mathrm{~cm}^{3}$) to afford the dihydro acid 14 , m.p. $79-80^{\circ} \mathrm{C}$ (light petroleum), (lit., ${ }^{10} 79.5-82.5^{\circ} \mathrm{C}$). $v_{\text {max }} / \mathrm{cm}^{-1}$ $3300-2300,1695,1650,1280,1230,940,905$ and $740 ; \delta 11.5$ (s, 1 $\left.\mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 5.8(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 5.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}-\mathrm{CH}_{3}\right), 3.6$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{HCCO}_{2} \mathrm{H}$), $2.5\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}, \mathrm{CH}_{2}\right)$ and $1.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: C, 69.3; H, 7.5. Calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 69.5 ; \mathrm{H}, 7.3 \%$).

2,3-Dimethylcyclohexa-2,5-diene-1-carboxylic acid 21a. 2,3Dimethylbenzoic acid $20(3 \mathrm{~g}, 20 \mathrm{mmol})$ was reduced with sodium (1.8 g) in THF ($50 \mathrm{~cm}^{3}$) and ammonia ($500 \mathrm{~cm}^{3}$) to afford the acid 21a, m.p. $75-76^{\circ} \mathrm{C}$ (light petroleum) (lit., ${ }^{10}$ $76^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300-2400,1695,1650,1300,1240,900$ and 695; $\delta 11.2\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 5.8(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 3.8(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{HCCO}_{2} \mathrm{H}\right), 2.8-2.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.7\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$ (Found: C, 71.0; H, 7.9. Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 71.1 ; \mathrm{H}, 7.8 \%$).
2,5-Dimethylcyclohexa-2,5-diene-1-carboxylic acid 24a. 2,5Dimethylbenzoic acid $23(3 \mathrm{~g}, 20 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$ and ammonia ($500 \mathrm{~cm}^{3}$) was reduced with sodium (1.8 g). The reaction mixture was worked up to afford the acid 24a, m.p. 81$82^{\circ} \mathrm{C}$ (light petroleum) (lit., ${ }^{10} 83^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300-2400$, $1690,1305,1220,900$ and $710 ; \delta 11.9\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CO}_{2} H\right), 5.6(\mathrm{~m}, 1$ $\mathrm{H},=\mathrm{CH}), 5.4(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.8-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.24(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CH}_{2}$) and $1.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$) (Found: $\mathrm{C}, 71.2, \mathrm{H}, 7.8$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}, \mathrm{C}, 71.1 ; \mathrm{H}, 7.8 \%$).
2-Methylcyclohexa-1,5-diene-1-carboxylic acid 10. Conjugation of 2-methylcyclohexa-2,5-diene-1-carboxylic acid $8(10 \mathrm{~g}$, 72 mmol) gave the acid 10 in 95% yield, m.p. $75-76^{\circ} \mathrm{C}$ (light petroleum) (lit., ${ }^{7} 76-78^{\circ} \mathrm{C}$). $v_{\text {max }} / \mathrm{cm}^{-1} 3500-2300,1685,1630$, $1590,1270,1080,740$ and $695 ; \delta 11.8$ (br s, $\left.1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 6.5-6.2$ (brd, $1 \mathrm{H}, H \mathrm{C}=\mathrm{CH}$), $5.9-5.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $2.4-1.7$ (m, 4 H) (Found: C, 69.45; H, 7.2. Calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 69.54 ; \mathrm{H}, 7.3 \%$).
5-Methylcyclohexa-1,5-diene-1-carboxylic acid 15 . To a stirred solution of sodium methoxide ($7.8 \mathrm{~g}, 145 \mathrm{mmol}$) in methanol ($150 \mathrm{~cm}^{3}$) was added 3-methylcyclohexa-2,5-diene-1-carboxylic
acid $\mathbf{1 4}(10 \mathrm{~g}, 72 \mathrm{mmol})$ in methanol $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 5 h . The methanol was completely removed under reduced pressure. The white residue was dissolved in water ($200 \mathrm{~cm}^{3}$), cooled and acidified with 10% hydrochloric acid. The precipitate was filtered off and recrystallised from light petroleum, to afford the conjugated acid $15(9.5 \mathrm{~g}, 95 \%)$, m.p. $95-96^{\circ} \mathrm{C} . v_{\text {max }} / \mathrm{cm}^{-1} 3400-2250,1685,1650,1605,1290$, $1180,1100,750$ and $720 ; \delta 11.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} H\right), 6.8(\mathrm{~m}, 1 \mathrm{H}$, $H \mathrm{C}=\mathrm{C}), 6.1\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}-\mathrm{CH}_{3}\right), 2.5-2.1\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$ and $1.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 69.4 ; \mathrm{H}, 7.4 . \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ requires C, 69.54; H, 7.3%).

Methyl 5,6-dimethylcyclohexa-1,5-diene-1-carboxylate 22. A mixture of methyl 2,3 -dimethylcyclohexa-2,5-diene-1-carboxylate $21 \mathrm{~b}(1.66 \mathrm{~g}, 10 \mathrm{mmol})$ and DBU ($2.28 \mathrm{~g}, 15 \mathrm{mmol}$) in benzene ($50 \mathrm{~cm}^{3}$) was stirred at $70^{\circ} \mathrm{C}$ for 5 h , and was then cooled and diluted with benzene $\left(50 \mathrm{~cm}^{3}\right)$. The benzene solution was worked up to yield the conjugated ester 22 as a yellow oil (1.5 g , 90%); $v_{\text {max }} / \mathrm{cm}^{-1} 1720,1590,1430,1260,1240,1040$ and $740 ; \delta$ $6.6(\mathrm{t}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.1\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$ and $1.8\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$ (Found: C, $72.3 ; \mathrm{H}, 8.4 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.26$; and $\mathrm{H}, 8.49 \%$).

Methyl 2,5-dimethylcyclohexa-1,5-diene-1-carboxylate 25. Conjugation of methyl 2,5 -dimethylcyclohexa-2,5-diene-1-carboxylate $24 \mathrm{~b}(1.66 \mathrm{~g}, 10 \mathrm{mmol})$ with DBU yielded the product 25 $(1.58 \mathrm{~g}, 95 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1705,1650,1600,1430,1260,1180$ and $1060 ; \delta 5.95$ (s, $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 3.6 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 2.3-1.9 (m, 7 $\left.\mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $1.8\left(\mathrm{br} \mathrm{s}, 3-\mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: C, 72.2; H, 8.4. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.3 ; \mathrm{H}, 8.5 \%$).

General Procedure for Diels-Alder Reactions.-A benzene solution of diene, dienophile (excess) and hydroquinone (catalytic) was either refluxed or heated in a sealed tube in an oil bath. After completion, the reaction mixture was worked up by removal of the solvent and then the crude product was esterified with ethereal diazomethane. The crude ester was chromatographed on silica gel eluted with ethyl acetate-hexane ($1: 20$) to afford the pure ester.
Dimethyl endo-1-methylbicyclo[2.2.2]oct-2-ene-2,6-dicarboxoxylate 26 and dimethyl endo-1-methylbicyclo[2.2.2]oct-2-ene2,5 -dicarboxylate 27. The acid $10(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl acrylate $\left(2.7 \mathrm{~cm}^{3}, 30 \mathrm{mmol}\right)$ were heated at $120^{\circ} \mathrm{C}$ for 48 h . The crude product was esterified and the mixture was chromatographed on silica gel. Elution with ethyl acetate-hexane ($1: 20$) afforded the pure ester $26(65 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1740,1710,1610$, $1430,1260,1205,1160,1080$ and $755 ; \delta 7.13(\mathrm{~d}, 1 \mathrm{H}, J 7,=\mathrm{CH})$, 3.63 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), $2.83-2.53(\mathrm{~m}, 1$ H , bridgehead proton), 2.36 (dd, $1 \mathrm{H}, \mathrm{J} 10$ and 6, $\mathrm{CHCO}_{2} \mathrm{Me}$), $1.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.1-1.15\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$ (Found: C, 65.6 ; H, 7.7. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 7.6 \%$). Further elution with ethyl acetate-hexane ($1: 10$) yielded the ester $27(35 \%) ; \delta$ $7.0(\mathrm{~d}, 1 \mathrm{H}, J 7,=\mathrm{CH}), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.56(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.3-2.9 (m, 1 H , bridgehead proton), 2.85-2.5 (m, 1 $\mathrm{H}), 1.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and 1.73-1.16 (m, 6-H, $\left.3 \times \mathrm{CH}_{2}\right)$.
Dimethyl cis-1-methylbicyclo[2.2.2]octane-2,6-dicarboxylate 28. Dimethyl endo-1-methylbicyclo[2.2.2]oct-2-ene-2,6-dicarboxylate $26(100 \mathrm{mg})$ was hydrogenated to give the saturated diester 28 ($95 \mathrm{mg}, 95 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1735,1430,1340,1200,1160$, 1080 and $1030 ; \delta 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $2.6-1.36(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.8,50.9,45.1,37.9,33.5,28.8$, $25.1,24.8$ and 23.5 (Found: C, 64.9; H, 8.4. Calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$: C, $65.0 ; \mathrm{H}, 8.4 \%$).
Dimethyl cis-1-methylbicyclo[2.2.2]octane-2,5-dicarboxylate 29. The ester $27(45 \mathrm{mg})$ in methanol ($3 \mathrm{~cm}^{3}$) was hydrogenated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst $(20 \mathrm{mg})$ until the hydrogen absorption ceased. The catalyst was filtered off and the solvent evaporated to afford the pure ester $29(42 \mathrm{mg}, 90 \%) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $1735,1460,1440,1370,1200$ and $1180 ; \delta 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.7-1.3(\mathrm{~m}, 10 \mathrm{H})$ and $0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13}$ C NMR $\delta 175.0$ (s), 174.7 (s), 50.9 (q), 45.6 (d), 41.0 (d), 33.5 (t), 30.3 (s), 29.9 (t), 26.2 (d), 25.8 (t), 25.5 (t) and 24.8 (q) (Found: C, 64.9, H, 8.4. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $65.0 ; \mathrm{H}, 8.4 \%$). Ester 29 was also obtained by hydrogenation of the dimethyl endo-4-methylbicyclo[2.2.2] oct-2-ene-2,5-dicarboxylate 36 (see below).

Methyl endo-6-acetyl-1-methylbicyclo[2.2.2]oct-2-ene-2-carboxylate 30 and methyl endo-5-acetyl-1-methylbicyclo[2.2.2]-oct-2-ene-2-carboxylate 31. The acid $10(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl vinyl ketone ($4.16 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) were heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 36 h . The crude product was esterified to afford a mixture of regioisomers 30 and $31(0.89 \mathrm{~g}, 80 \%)$. Purification by chromatography over silica gel and elution with ethyl acetate-hexane ($1: 20$) afforded the ester $30(0.5 \mathrm{~g}, 60 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1715,1705$ and $1625 ; \delta 7.1(\mathrm{~d}, 1 \mathrm{H}, J 7,=\mathrm{CH}), 3.58$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 2.85-2.6 (m, 1 H, bridgehead proton), 2.5 (dd, $\left.1 \mathrm{H}, \mathrm{J} 10,6, \mathrm{CHCOCH} \mathrm{H}_{3}\right), 2.1-1.0\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.85$ (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$) and 1.38 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) (Found: $\mathrm{C}, 70.2$; $\mathrm{H}, 8.1 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}, 8.2 \%$). Further elution with ethyl acetate-hexane ($1: 10$) gave the pure ester $31(0.2 \mathrm{~g})$; $v_{\text {max }} / \mathrm{cm}^{-1} 1710$ and $1705 ; \delta 6.95(\mathrm{~d}, 1 \mathrm{H}, J 7,=\mathrm{CH}), 3.6(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.0-2.8(\mathrm{~m}, 1 \mathrm{H}), 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.7-1.2$ $(\mathrm{m}, 6 \mathrm{H})$ and $1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: C, 70.3; H, 8.2. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, $70.2 ; \mathrm{H}, 8.2 \%$).

Methyl 6-chloro-6-cyano-1-methylbicyclo[2.2.2]oct-2-ene-2carboxylate 32 and methyl 5-chloro-5-cyano-1-methylbicyclo[2.2.2] oct-2-ene-2-carboxylate 33. The acid $10(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and 2-chloroacrylonitrile ($4 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) were heated at $100^{\circ} \mathrm{C}$ for 36 h to afford the adduct which was esterified resulting in a mixture of regioisomers 32 and $33(1 \mathrm{~g}, 84 \%)$. This mixture could not be separated even by chromatography. The mixture of 32 and $33 \mathrm{had}, v_{\text {max }} / \mathrm{cm}^{-1} 2240,1710$ and $1610 ; \delta 7.21$, $7.26(2 \mathrm{~d}, 2 \times 1 \mathrm{H}, J 7,=\mathrm{CH}), 3.62,3.65\left(2 \mathrm{~s}, 2 \times 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $1.65\left(\mathrm{~s}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $3.0-1.2(\mathrm{~m}, 2 \times 7 \mathrm{H})$.
Dimethylendo-4-methylbicyclo[2.2.2]oct-2-ene-2,5-dicarboxylate 36. Treatment of the 5 -methylcyclohexa-1,5-diene-1carboxylic acid $15(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ with methyl acrylate (2.7 $\mathrm{cm}^{3}, 30 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$, in refluxing benzene for 12 h , afforded the diester $36(1.025 \mathrm{~g}, 86 \%) ; v_{\max } / \mathrm{cm}^{-1} 1740,1710,1630,1440$, 1280, 1255, 1075 and $755 ; \delta 7.03$ (s, $1 \mathrm{H},=\mathrm{CH}$), $3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.24(\mathrm{~s}, 1 \mathrm{H}$, bridgehead proton), 2.53 (dd, $1 \mathrm{H}, J 10,4, \mathrm{CHCO}_{2} \mathrm{CH}_{3}$), $2.0-1.9(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.6-1.1\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$ and $1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: C, 65.5; H, 7.6. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ requires C, $65.5 ; \mathrm{H}, 7.6 \%$).

Methyl endo-5-acetyl-4-methylbicyclo[2.2.2]oct-2-ene-2-carboxylate 37. The acid $15(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl vinyl ketone ($4.16 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) in benzene were refluxed for 24 h . The compound $37(1.06 \mathrm{~g}, 96 \%)$ was obtained after esterification; $v_{\text {max }} / \mathrm{cm}^{-1} 1715,1705,1625,1435,1280,1250,1155,1070$ and $760 ; \delta 7.13(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.26(\mathrm{~s}, 1$ H , bridgehead proton), $2.71\left(\mathrm{dd}, 1 \mathrm{H}, J 10,4, \mathrm{CHCOCH}_{3}\right), 2.1-$ $1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.65-1.08(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$) and $1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$ (Found: $\mathrm{C}, 70.2 ; \mathrm{H}, 8.2$. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}, 8.2 \%$).
Trimethyl cis,endo-4-methylbicyclo[2.2.2]oct-2-ene-2,5,6-tricarboxylate 38.-The acid $15(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and maleic anhydride ($0.735 \mathrm{~g}, 75 \mathrm{mmol}$) were refluxed in benzene for 5 h and then the crude product was esterified. The compound 38 $(1.4 \mathrm{~g}, 94 \%)$ was obtained as a pale-yellow liquid; $v_{\text {max }} / \mathrm{cm}^{-1}$ $1740,1710,1620,1190,1040$ and $775 ; \delta 7.03(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.79$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), $3.54(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 10,2, \mathrm{HCHCO}_{2} \mathrm{CH}_{3}\right), 2.59(\mathrm{~d}, 1 \mathrm{H}, J$ $10, \mathrm{HCCO}_{2} \mathrm{CH}_{3}$), $1.68-1.16\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$ and $1.26(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$) (Found: $\mathrm{C}, 60.8 ; \mathrm{H}, 6.8 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 60.8 ; \mathrm{H}$, 6.8%).
Methyl 5-chloro-5-cyano-4-methylbicyclo[2.2.2]oct-2-ene-2carboxylate 39. The acid 15 ($0.69 \mathrm{~g}, 5 \mathrm{mmol}$) and 2-chloroacrylonitrile ($4 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) were refluxed in benzene for 18 h .

After removal of benzene, the crude product was esterified to afford an epimeric mixture $39(0.7 \mathrm{~g}, 73 \%)$ as a viscous liquid; $v_{\text {max }} / \mathrm{cm}^{-1} 2240,1710$ and $1630 ; \delta 6.8(\mathrm{~d}, 1 \mathrm{H}, J 2,=\mathrm{CH}), 3.7(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$) $3.23(\mathrm{~m}, 1 \mathrm{H}$, bridgehead proton) and 2.9-1.2 ($\mathrm{m}, 6$ $\mathrm{H}, 3 \times \mathrm{CH}_{2}$).
4-Methyl-5-oxobicyclo[2.2.2]oct-2-ene-2-carboxylic acid 40. The above compound 39 was stirred in dimethyl sulfoxide (10 cm^{3}), with 20% aqueous potassium hydroxide ($15 \mathrm{~cm}^{3}$) at room temperature for 48 h . The reaction mixture was worked up to yield the keto acid $40(0.45 \mathrm{~g}, 82 \%)$ which was crystallised from benzene-light petroleum ($1: 1$), m.p. $143-145^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3300-2600,1710,1690,1615,1450,1300,1290,1090$ and 750; $\delta 10.57-10.38\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 7.08(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.58(\mathrm{br} \mathrm{s}, 1-$ H , bridgehead proton), $2.22-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-1.51$ (m, $2 \times \mathrm{CH}_{2}$) and $1.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.4(\mathrm{~s}), 168.6(\mathrm{~s})$, 145.9 (d), 138.8 (s), 50.9 (s), 39.2 (t), 31.3 (d), 30.1 (t), 25.5 (t) and 16.9 (q) (Found: C, 66.6; H, 6.7. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C, 66.6; H, 6.7\%).

Methyl 5-cyano-4-methylbicyclo[2.2.2]oct-2-ene-2-carboxylate 41. The acid $15(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ and acrylonitrile $\left(1.3 \mathrm{~cm}^{3}, 20\right.$ mmol) were refluxed at $80^{\circ} \mathrm{C}$ for 48 h . Removal of the solvent followed by esterification gave the ester $41(0.98 \mathrm{~g}, 96 \%)$ as a pale-yellow liquid; $v_{\max } / \mathrm{cm}^{-1} 2245,1715,1625,1440,1280,1065$ and $760 ; \delta 6.9(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.23(\mathrm{~m}, 1 \mathrm{H}$, bridgehead proton), $2.56(\mathrm{dd}, 1 \mathrm{H}, J 10,4, \mathrm{CHCN}), 2.3-1.83(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.76-1.06\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$ and $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: C, 70.2; H, 7.3; N, 15.5. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, $70.2 ; \mathrm{H}$, 7.4; N, 15.6%).

Methyl endo-5-acetyl-3,4-dimethylbicyclo[2.2.2]oct-2-ene-2carboxylate 42. The diene ester $22(0.88 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl vinyl ketone ($4.2 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) were heated in a sealed tube at $80^{\circ} \mathrm{C}$, for 12 h , and the product was esterified to afford the ester $42(1.025 \mathrm{~g}, 82 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1700$ and $1610 ; \delta 3.66(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.3-3.06(m, 1 H , bridgehead proton), $2.58(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $\left.10,6, \mathrm{CHCOCH}_{3}\right), 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33-0.66(\mathrm{~m}, 6 \mathrm{H}), 1.96(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$) and $1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)\left(\right.$ Found:C, $71.1 ; \mathrm{H}, 8.6 \% ; \mathrm{M}^{+}$, 236.1404. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 8.5 \% ; M, 236.1412$).

Pyrazoline derivative 43. Methyl endo-5-acetyl-4-methylbi-cyclo[2.2.2]oct-2-ene-2-carboxylate $37(6.66 \mathrm{~g}, 30 \mathrm{mmol})$ in chloroform ($20 \mathrm{~cm}^{3}$) was treated with an ethereal solution of diazomethane (large excess) in a stoppered flask protected from light, and left at $4^{\circ} \mathrm{C}$ until the reaction was complete (7 days) as monitored by TLC. The reaction mixture was worked up to afford the pyrazoline derivative 43 ($7.8 \mathrm{~g}, 98.5 \%$) as a viscous liquid; $v_{\text {max }} / \mathrm{cm}^{-1} 1725,1700$ and $1550 ; \delta 4.76(\mathrm{dd}, 1 \mathrm{H}, J 18,4$, NCH), $4.3(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 18,8, \mathrm{NCH}), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.1-0.9$ $\left(\mathrm{m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$ and $\left.3 \times \mathrm{CH}\right), 2.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 0.83(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.58$ (s), 169.17 (s), 101.23 (s), $80.25(\mathrm{t})$, 52.6 (d), 52.4 (q), 35.67 (d), 32.76 (s), 32.5 (q), 28.62 (d), 27.74 (t), 27.37 (t), 23.18 (q) and 20.37 (t) (Found: $\mathrm{M}^{+}, 264.1475$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: M, 264.1474$).

The above pyrazoline derivative $43(5.0 \mathrm{~g})$ was heated in ethylene glycol $\left(10 \mathrm{~cm}^{3}\right)$ at $200^{\circ} \mathrm{C}$ for 15 min . The product was worked up to afford the ester $42(3.75 \mathrm{~g}, 80 \%)$, identical with the above.

Dimethyl endo-1,4-dimethylbicyclo[2.2.2]oct-2-ene-2,5-dicarboxylate 44 and dimethyl endo-1,4-dimethylbicyclo[2.2.2]oct-2-ene-2,6-dicarboxylate 45. The diene ester 25 ($0.88 \mathrm{~g}, 5 \mathrm{mmol}$) and methyl acrylate ($2.7 \mathrm{~cm}^{3}, 30 \mathrm{mmol}$) were heated in a sealed tube at $120^{\circ} \mathrm{C}$, for 48 h . The reaction mixture was esterified to yield the diester as a mixture of regioisomers 44 and $45(1.015 \mathrm{~g}$, 76%) in 2:1 ratio which resisted separation. The mixture had $v_{\text {max }} / \mathrm{cm}^{-1} 1730,1715$ and $1600 ; \delta 6.93,6.83(2 \mathrm{~s}, 2 \times 1 \mathrm{H},=\mathrm{CH})$, 3.66, $3.65\left(2 \mathrm{~s}, 2 \times 1 \mathrm{H}, \mathrm{J} 10,6, \mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 3.61,3.6(2 \mathrm{~s}$, $\left.2 \times 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.5,2.4(2 \mathrm{dd}, 2 \times 1 \mathrm{H}, J 10,6$, $\left.\mathrm{CHCO} \mathrm{CH}_{3}\right), 2.0-0.9(\mathrm{~m}, 2 \times 6 \mathrm{H}), 1.4,1.36(2 \mathrm{~s}, 2 \times 3 \mathrm{H}$, CH_{3}), 1.23 and $1.2\left(2 \mathrm{~s}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (Found: C, 66.6, H, 7.9, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.6 ; \mathrm{H}, 8.0 \%$).

Acknowledgements

We thank Dr. A. Srikrishna for helpful discussions and the Department of Science and Technology, New Delhi for support of this investigation. One of us (K. V.) thanks the CSIR for the award of a fellowship.

References

1 Part 7, S. Raghavan and G. S. R. Subba Rao, Heterocycles, 1993, in the press.
2 R. P. Gregson and R. N. Mirringon, Aust. J. Chem., 1976, 29, 2037.
3 A. J. Birch and G. S. R. Subba Rao, Aust. J. Chem., 1970, 23, 1641.
4 A. J. Birch, E. M. A. Shouky and F. Stansfield, J. Chem. Soc., 1961, 5376.

5 A. J. Birch and G. S. R. Subba Rao, Adv. Org. Chem., 1972, 8, 1-65.
6 A. J. Birch, J. Chem. Soc., 1947, 1642.
7 A. J. Birch, J. Chem. Soc., 1950, 1551.
8 D. H. R. Barton, H. Togo and S. Z. Zard, Tetrahedron, 1985, 41, 5507.

9 M. E. Kuehne and B. F. Lambert, J. Am. Chem. Soc., 1959, 81, 4278.

10 H. Van Bekkum, C. B. Van Den Bosch, G. Van Minnenpathuis, J. C. DeMos and A. M. Van Wijk, Recl. Trav. Chim. Pays-Bas, 1971, 90, 137.

11 R. W. Freerksen, S. J. Selikson, R. B. Wroble, K. S. Kyler and D. S. Watl, J. Org. Chem., 1983, 48, 4087.
12 C. Cariviela, M. D. Diaz de Villegas, J. A. Mayoral and E. Melendez, J. Org. Chem., 1985, 50, 3167.

13 K. V. Bhaskar and G. S. R. Subba Rao, Tetrahedron Lett., 1989, 225. 14 G. S. R. Subba Rao and K. Kaliappan, unpublished work.

Paper 3/02370B
Received 26th April 1993
Accepted 4th June 1993

